Wichtiger Hinweis / Important notice

Die Webseite www.ph.tum.de wurde am 31.03.2023 eingefroren. Mit dem Zusammenschluss der Fakultäten Chemie und Physik zur TUM School of Natural Scienes finden Sie aktuelle Informationen dort.

The website www.ph.tum.de was frozen on 31.03.2023. With the merger of the Faculties of Chemistry and Physics to form the TUM School of Natural Sciences, you will now find up-to-date information there.

https://www.nat.tum.de

Effizienz der Wasser-Elektrolyse verdoppelt

Kupferschicht unter der Oberfläche steigert Aktivität von Platin-Elektroden

2016-03-10 – Nachrichten aus dem Physik-Department

Die Wasser-Elektrolyse konnte sich als Verfahren für die Produktion von Wasserstoff bislang nicht durchsetzen. Zu viel Energie geht in dem Prozess verloren. Mit einem Trick hat ein Team aus Forschern der Technischen Universität München (TUM), der Ruhr-Universität Bochum und der Universität Leiden die Effizienz der Reaktion nun verdoppelt.

Eine Kupferschicht unter der Oberfläche verleiht dem Platin-Katalysator eine deutlich höhere Aktivität und eine längere Lebensdauer
Eine Kupferschicht unter der Oberfläche verleiht dem Platin-Katalysator eine deutlich höhere Aktivität und eine längere Lebensdauer – Bild: Federico Calle Vallejo / Univ. Leiden

Noch müssen bei Stromüberschuss Windräder vom Netz genommen werden. Als Alternative wird immer wieder die Spaltung von Wasser in Wasserstoff und Sauerstoff genannt, die mit der überschüssigen Energie betrieben werden könnte. Doch bisher wird Wasserstoff industriell vor allem aus Erdgas hergestellt. Ein Prozess, bei dem zwar große Mengen des Treibhausgases Kohlendioxid freigesetzt werden, der jedoch immer noch billiger ist als die Wasser-Elektrolyse.

Die Elektroden für die Wasser-Elektrolyse enthalten üblicherweise Platin als Katalysator, um die Umsetzung von Wasser zu Wasserstoff und Sauerstoff zu beschleunigen. Damit die Reaktion möglichst effizient abläuft, dürfen Zwischenprodukte dabei weder zu stark noch zu schwach an der Katalysatoroberfläche haften.

Herkömmliche Elektroden binden Zwischenprodukte zu stark

Das Team um Prof. Dr. Aliaksandr Bandarenka vom Lehrstuhl für Physik der Energieumwandlung und -speicherung der TU München und Prof. Dr. Wolfgang Schuhmann vom Bochumer Zentrum für Elektrochemie berechnete nun, wie stark die Zwischenprodukte an den Elektroden haften sollten, um eine möglichst effiziente Reaktion zu erlauben. Die Analyse ergab, dass herkömmlichen Elektroden aus Platin, Rhodium und Palladium die Zwischenprodukte etwas zu stark binden.

Die Forscher modifizierten daher die Eigenschaften der Platin-Katalysatoroberfläche, indem sie eine Schicht aus Kupferatomen einfügten. Mit dieser Zusatzschicht erzeugte das System doppelt so viel Wasserstoff wie mit einer reinen Platinelektrode. Allerdings nur, wenn die Forscher die Kupferschicht direkt unter der obersten Lage der Platinatome einbrachten. Die Gruppe beobachtete zudem, dass die Elektroden mit der Kupferschicht langlebiger waren, zum Beispiel widerstandsfähiger gegen Korrosion.

Wasser-Elektrolyse könnte mit überschussstrom betrieben werden

Nur vier Prozent des weltweit produzierten Wasserstoffs entstehen bislang durch die Elektrolyse von Wasser. Weil die verwendeten Elektroden nicht effizient genug sind, lohnt sich eine großflächige Anwendung nicht. „Bisher wird Wasserstoff überwiegend aus fossilen Brennstoffen gewonnen, wobei eine hohe Menge CO2 freigesetzt wird“, sagt Wolfgang Schuhmann. „Es wäre ein großer Schritt in Richtung klimaschonender Energieumwandlung, wenn wir Wasserstoff stattdessen mittels Elektrolyse gewinnen würden. Dafür könnten wir den Überschussstrom zum Beispiel aus der Windkraft nutzen.“

„Darüber hinaus ermöglicht uns die Forschung an dieser Reaktion zu testen, wie gut wir Katalysatoroberflächen designen können, indem wir unterschiedliche Metallatome präzise positionieren,“ ergänzt Aliaksandr Bandarenka. „Dieses Wissen könnte auch vielen anderen katalytischen Prozessen zugute kommen.“Die Deutsche Forschungsgemeinschaft förderte die Arbeiten im Rahmen der Exzellenzcluster RESOLV und Nanosystems Initiative Munich (NIM). Weitere Unterstützung kam von der Helmholtz-Energie-Allianz „Stationäre elektrochemische Speicher und Wandler“.

Redaktion:
Julia Weiler (RUB) / Andreas Battenberg (TUM) / Dr. Johannes Wiedersich (Physik-Department)

Veröffentlichung

Making the hydrogen evolution reaction in polymer electrolyte membrane electrolyzers even faster
J. Tymoczko, F. Calle-Vallejo, W. Schuhmann, A. S. Bandarenka

Kontakt

Prof. Dr. Aliaksandr S. Bandarenka
Technische Universität München
James-Franck-Str. 1
85748 Garching
Tel.: +49 89 289-12531
Nach oben