Wichtiger Hinweis / Important notice

Die Webseite www.ph.tum.de wurde am 31.03.2023 eingefroren. Mit dem Zusammenschluss der Fakultäten Chemie und Physik zur TUM School of Natural Scienes finden Sie aktuelle Informationen dort.

The website www.ph.tum.de was frozen on 31.03.2023. With the merger of the Faculties of Chemistry and Physics to form the TUM School of Natural Sciences, you will now find up-to-date information there.

https://www.nat.tum.de

Dem Geheimnis der Achilles-Ferse auf der Spur

Interdisziplinäres Team erforscht Grenzbereich zwischen Sehne und Knochen

2017-02-28 – Nachrichten aus dem Physik-Department

Gehen, laufen, rennen – jede Bewegung des Fußes zerrt an der Achillessehne. Bei Sprüngen kann die Belastung das Zehnfache des Körpergewichts betragen. Erstaunlicherweise hält die Verbindung zwischen Fersenbein und Achillessehne diesen enormen Kräften stand. Warum, das hat ein interdisziplinäres Team aus Medizin, Physik, Chemie und Ingenieurwissenschaften an der Technischen Universität München (TUM) herausgefunden.

Leone Rossetti und Lara Kuntz am Fluoreszenz-Mikroskop
Leone Rossetti und Lara Kuntz am Fluoreszenz-Mikroskop. – Photo: Andreas Heddergott / TUM

Rund 8000 Risse der Achillessehne müssen in Deutschland jedes Jahr behandelt werden, obwohl sie die stärkste Sehne des menschlichen Körpers ist. Sie verbindet Fersenbein und Wadenmuskel und hält bis zum Zehnfachen des Körpergewichts aus. Benannt ist sie nach dem – fast – unverletzbaren griechischen Helden Achilleus, dem ein Pfeilschuss in die Ferse zum Verhängnis wurde.

„Obwohl in der Orthopädie tagtäglich Patientinnen und Patienten mit Sehnenverletzungen behandelt werden, wissen wir noch immer sehr wenig über den genauen feingeweblichen Aufbau am direkten Übergang von der Sehne zum Knochen: Die biochemischen Vorgänge, die Mikromechanik und die Mikrostruktur des Gewebes sind bisher kaum erforscht“, berichtet PD Dr. Rainer Burgkart, Oberarzt und Forschungsleiter am Lehrstuhl für Orthopädie und Sportorthopädie der TUM.

Fluoreszenz-Mikroskopbild des Übergangs von Sehne zu Knochen
Fluoreszenz-Mikroskopbild des Übergangs von Sehne (links unten) zu Knochen (rechts oben). In der Mitte sind die feinen Fasern des Collagen-Typs 2 zu sehen. – Bild: Rossetti/Kuntz / TUM
Doktorandin Lara Kuntz am Fluoreszenzmikroskop
Doktorandin Lara Kuntz am Fluoreszenzmikroskop – Photo: Andreas Heddergott

Dünne Fasern, perfekter Halt

Zusammen mit einem interdisziplinären Team aus Biochemie und Biophysik der TU München hat der Mediziner im Rahmen des neugegründeten Center for functional Protein Assemblies (CPA) und der Munich School of Bioengineering (MSB) das Geheimnis der Achillessehne entschlüsselt: Zwischen Sehnen und Knochen entdeckten die Experten eine Gewebeschicht, die aus extrem dünnen Proteinfasern besteht und für eine extrem hohe Stabilität sorgt.

Menschen sind daher in der Lage, über Hürden zu springen, hohe Sprünge und harte Landungen zu machen, ohne dass die Verbindung zwischen Sehne und Fersenbein Schaden nimmt. Tatsächlich reißt eher die Sehne, als dass sich die Verbindung zum Knochengewebe löst.

„Dass die Sehnen direkt am Knochen ansetzen, das war bislang die Annahme. Tatsächlich gibt es jedoch einen Übergangsbereich. Hier spleißt sich das Sehnengewebe auf in Dutzende von feinen Fasern mit einer ganz charakteristischen biochemischen Zusammensetzung“, erklärt Professor Andreas Bausch, Inhaber des Lehrstuhls für Zellbiophysik und Leiter der interdisziplinären Forschungsgruppe. „Die dünnen Fasern sind fest in der zerklüfteten Oberfläche des Knochens verankert und mechanisch äußerst belastbar.“

Interdisziplinäres team: Medizin, Physik, Chemie und Ingenieurwissenschaften

Entdeckt wurden die feinen Fasern durch einen neuen, interdisziplinären Forschungsansatz: „Die Innovation der Arbeit liegt darin, dass wir verschiedene medizinische, physikalische und ingenieurwissenschaftliche Verfahren kombiniert haben“, sagt Bausch.

Ein Stück Schweineknochen mit Sehne, in der Orthopädie sorgfältig präpariert, wurde am Lehrstuhl für Zellbiophysik in eine Apparatur eingespannt und fixiert. Dann richteten die Forscherinnen und Forscher das Mikroskop auf die Grenzschicht, entlang derer die Sehne mit dem Knochen verwachsen ist. Mit Hilfe der Multiskalen-Mikroskopie-Technik wurden Dutzende von Aufnahmen erstellt und digital zu einem großen Bild zusammengeführt. „Auf diese Weise konnten wir die Struktur der feinen, aufgespleißten Fasern sichtbar machen“, berichtet Bausch.

Im nächsten Schritt verwendete das Team fluoreszierende Antikörper, um bestimmte Proteine zum Leuchten zu bringen. Hier zeigte sich, dass die dünnen Fasern eine andere biochemische Zusammensetzung haben als die eigentliche Sehne. Im dritten Teil des Experiments bewegten sie die Sehne unter Belastung hin und her und filmten dabei die Fasern. Das Ergebnis: Je nach Belastungsrichtungen sind unterschiedliche Fasern aktiv und stabilisieren den Kontakt.

Ergänzt wurden die lichtmikroskopischen Untersuchungen durch besonders hochauflösende Bilder eines Elektronenmikroskops. Mitarbeiter des Lehrstuhls für Medizinische Biophysik setzten außerdem einen Mikro-Computertomographen ein, mit dem sich die Grenzregion dreidimensional darstellen ließ. Am Lehrstuhl für organische Chemie wurden die unterschiedlichen Proteine in Sehnen und Übergangsfasern analysiert.

Ansätze für die Medizin der Zukunft

„Unsere Ergebnisse erlauben es erstmals, die biochemischen und biomechanischen Prozesse in der Kontaktzone zwischen Knochen und Sehne zu verstehen, die unserem Bewegungsapparat seine enorme Stabilität verleihen“, resümiert Bausch.

Mögliche Anwendungen ergeben sich sowohl in der Materialforschung als auch in der Medizin: Ingenieurtechnisch könnten innovative Verbindungen zwischen festen und weichen Stoffen hergestellt werden. Und in der Orthopädie sollen die Erkenntnisse genutzt werden, um künftig in der Tumorchirurgie Sehnen an Implantate zu refixieren.

Die Arbeit entstand in einem Projekt der aus Mitteln der Deutschen Forschungsgemeinschaft (DFG) im Rahmen der Exzellenzinitiative geförderten International Graduate School of Science and Engineering (IGSSE) und wurde vom Exzellenzcluster Nanosystems Initiative Munich (NIM) unterstützt.

Redaktion
Dr. Andreas Battenberg, Dr. Johannes Wiedersich

Veröffentlichung

The microstructure and micromechanics of the tendon–bone insertion
L. Rossetti, L. A. Kuntz, E. Kunold, J. Schock, K. W. Müller, H. Grabmayr, J. Stolberg-Stolberg, F. Pfeiffer, S. A. Sieber, R. Burgkart and A. R. Bausch

Kontakt

Prof. Dr. Andreas Bausch
Technische Universität München
James-Franck-Str. 1, 85747 Garching, Germany
Tel.: +49 89 289 12480
Nach oben