Wichtiger Hinweis / Important notice

Die Webseite www.ph.tum.de wurde am 31.03.2023 eingefroren. Mit dem Zusammenschluss der Fakultäten Chemie und Physik zur TUM School of Natural Scienes finden Sie aktuelle Informationen dort.

The website www.ph.tum.de was frozen on 31.03.2023. With the merger of the Faculties of Chemistry and Physics to form the TUM School of Natural Sciences, you will now find up-to-date information there.

https://www.nat.tum.de

Histologie in 3D

Neue Färbemethode ermöglicht Nano-CT-Aufnahmen von Gewebeproben

2018-02-22 – Nachrichten aus dem Physik-Department

Bislang werden Gewebeproben von Patienten für histologische Untersuchungen in dünne Scheiben geschnitten. Das könnte sich in Zukunft ändern: Ein interdisziplinäres Team der Technischen Universität München (TUM) hat eine Färbemethode entwickelt, die es erlaubt, dreidimensionale Gewebeproben mit dem ebenfalls kürzlich an der TUM entwickelten Nano-CT-Gerät zu untersuchen.

Links: Micro-CT-Aufnahme einer Mausniere, rechts: Nano-CT-Aufnahme des Gewebes.
Diese Aufnahmen wurden durch die neue Färbemethode möglich: Links: Micro-CT-Aufnahme einer Mausniere, rechts: Nano-CT-Aufnahme des Gewebes. – Bild: Müller, Pfeiffer / TUM / mit Erlaubnis von PNAS

Gewebeschnitte sind in Kliniken eine Standardprozedur, um beispielsweise Tumorgewebe zu untersuchen. Wie der Name sagt, wird Körpergewebe dabei in dünne Scheiben geschnitten, eingefärbt und unter dem Mikroskop untersucht. Ein langgehegter Traum der Medizin ist es, nicht nur Schnitte zu untersuchen, sondern die gesamte, dreidimensionale Probe. Das naheliegendste Verfahren dafür wäre Computertomographie (CT), ebenfalls ein Standardverfahren im Krankenhausalltag.

Bisher Einschränkungen bei Auflösung und Kontrast

Franz Pfeiffer mounting a sample on the Nano-CT device.
Franz Pfeiffer mounting a sample on the Nano-CT device. Professor Pfeiffer is the Director of TUM’s Munich School of BioEngineering and Professor of Biomedical Physics. He headed the teams that developed the new staining method and the Nano-CT device. – Image: Heddergott / TUM

Dass der Traum bislang unverwirklicht blieb, hat zwei Gründe: Erstens ist die Auflösung herkömmlicher CT-Geräte zu gering. Existierende Mikro- und Nano-CTs sind für den Einsatz in der Praxis selten geeignet. Bei manchen ist die Auflösung nicht variabel genug, andere sind auf Strahlung aus großen Teilchenbeschleunigern angewiesen.

Dr. Madleen Busse and Prof. Franz Pfeiffer at the Nano-CT device.
Dr. Madleen Busse and Prof. Franz Pfeiffer at the Nano-CT device. The new staining method and the novel imaging device could make histology go 3D. – Image: Heddergott / TUM

Zweitens lässt sich Weichgewebe notorisch schlecht in CT-Geräten untersuchen. Proben müssen eingefärbt werden, damit es überhaupt sichtbar wird. Färbemittel für CT-Aufnahmen sind teilweise sehr giftig und extrem zeitaufwendig in der Anwendung. Mitunter verändern sie das Gewebe so, dass es im Anschluss nicht weiter untersucht werden kann.

Erfolgreiche Kooperation von Physik, Chemie und Medizin

Chemist Dr. Madleen Busse has started from a standard staining procedure to develop a staining method suited for CT.
Chemist Dr. Madleen Busse has started from a standard staining procedure to develop a staining method suited for CT. – Image: Heddergott / TUM

Wissenschaftlerinnen und Wissenschaftler der Munich School of BioEngineering (MSB) an der TUM haben beide Probleme gelöst: Im November 2017 stellte das Team um Prof. Franz Pfeiffer ein Nano-CT-Gerät vor, das eine Auflösung von bis zu 100 Nanometern liefert und für den Betrieb in herkömmlichen Labors geeignet ist. In der aktuellen Ausgabe des Fachmagazins PNAS stellen die Forscherinnen und Forscher aus Physik, Chemie und Medizin eine Färbemethode für histologische Untersuchungen mit dem Nano-CT vor.

An einer Mausniere demonstrierten sie, dass im Nano-CT dreidimensionale Bilder erzeugt werden können, die dem Informationsgehalt von Gewebeschnitten entsprechen. Den Kern der Färbemethode bildet Eosin, ein Standard-Farbstoff für Gewebeschnitte, der bislang als nicht CT-geeignet galt.

„Um Eosin trotzdem nutzen zu können, haben wir unter anderem eine spezielle Vorbehandlung entwickelt“, erläutert die Chemikerin Dr. Madleen Busse. Das Färbeverfahren ist so zeitsparend, dass es auch im Klinikalltag anwendbar wäre. „Eine weitere Besonderheit ist, dass die Gewebeprobe im Anschluss an den Scan problemlos mit klassischen Methoden untersucht werden kann“, sagt Madleen Busse.

Ergänzung statt Ersatz

Als nächsten Schritt wollen die Forscherinnen und Forscher humane Gewebeproben untersuchen. In absehbarer Zeit wird CT-Histologie klassische Methoden jedoch nicht ersetzen. Das Team versteht das Verfahren zunächst als Ergänzung. Ärztinnen und Ärzte könnten so beispielsweise zusätzliche Informationen über die dreidimensionale Verteilung von Zellen und Zellkernen gewinnen.

Prof. Franz Pfeiffer sieht zudem neue Möglichkeiten für die medizinische Grundlagenforschung: „Neben dem Einsatz in der Diagnose könnte die zerstörungsfreie und dreidimensionale Untersuchung mit dem Nano-CT neue Einsichten in die mikroskopische Entstehung der Volkskrankheit Krebs liefern.“

Mehr Informationen

Nano-CT und Färbmethode wurden am Physik-Department und an der Munich School of BioEngineering (MSB) entwickelt. Dieses interdisziplinäre Forschungszentrum der TUM ist europaweit die thematisch umfassendste universitäre Einrichtung für das Schnittfeld von Medizin, Ingenieur- und Naturwissenschaften. Direktor der MSB ist Franz Pfeiffer, Professor für Biomedizinische Physik.

Veröffentlichung

Three-dimensional virtual histology enabled through cytoplasm-specific X-ray stain for microscopic and nanoscopic computed tomography
M. Busse, M. Müller, M. A. Kimm, S. Ferstl, S. Allner, K. Achterhold, J. Herzen, F. Pfeiffer

Kontakt

Prof. Dr. Franz Pfeiffer
Chair of Biomedical Physics and Munich School of BioEngineering
Technische Universität München
Tel.: +49 (89) 289 12551
Nach oben