Wichtiger Hinweis / Important notice

Die Webseite www.ph.tum.de wurde am 31.03.2023 eingefroren. Mit dem Zusammenschluss der Fakultäten Chemie und Physik zur TUM School of Natural Scienes finden Sie aktuelle Informationen dort.

The website www.ph.tum.de was frozen on 31.03.2023. With the merger of the Faculties of Chemistry and Physics to form the TUM School of Natural Sciences, you will now find up-to-date information there.

https://www.nat.tum.de

Spitzenforschung vom Nanodraht bis zur Supernova

Europäische Förderung: drei ERC Consolidator Grants für TUM-Physik

2017-12-13 – Nachrichten aus dem Physik-Department

Fünf neue Forschungsvorhaben aus der Technischen Universität München (TUM) haben aktuell den Europäischen Forschungsrat (ERC) überzeugt und werden mit sogenannten Consolidator Grants gefördert. Drei der Projekte stammen aus der Physik, aus den Bereichen Nanowissenschaften, Festkörperphysik und Kosmologie.

Nanodrähte aus Halbleider-Material
In seinem ERC-Projekt wird PD Dr. Gregor Koblmüller Nanodrähte aus Halbleider-Material entwickeln, die in integrierten photonischen und quantenoptischen Schaltkreisen zum Einsatz kommen könnten. – Bild: Chris Hohmann / TUM

Um die hochdotierten ERC Consolidator Grants können sich Forscherinnen und Forscher bewerben, deren Promotion sieben bis zwölf Jahre zurückliegt. Die Projekte werden vom ERC mit jeweils bis zu zwei Millionen Euro gefördert. Bereits im August wurden sechs TUM-Angehörige jeweils mit einem ERC Starting Grant ausgezeichnet. Durch die Consolidator Grants steigt die Zahl der ERC-Grants an der TUM auf 84. Von diesen kommen nun insgesamt 23 aus dem Physik-Department.

Privatdozent Dr. Gregor Koblmüller

PD Dr. Gregor Koblmüller
PD Dr. Gregor Koblmüller – Photo: W. Schürmann / TUM

In seinem ERC-geförderten Forschungsprojekt „Quantum Nanowire Integrated Photonic Circuits“, kurz: QUANtIC, will Privatdozent Dr. Gregor Koblmüller Nanodraht-Strukturen aus Halbleitermaterial entwickeln, die etwa tausend Mal feiner sind als ein menschliches Haar. Diese Nanostrukturen sind optische Wellenleiter und zugleich so dünn, dass ihre physikalischen Eigenschaften von Quanteneffekten bestimmt werden. Nano-Drähte lassen sich nutzen, um winzige drahtförmige Lichtquellen wie Nanolaser und Einzelphotonen-Emitter mit gezielten Eigenschaften direkt auf Halbleiterchips anzubringen. Solche Lichtquellen können direkt an integrierte photonische und quantenoptische Schaltkreise gekoppelt werden. Das würde die Entwicklung von hochintegrierten Technologien in der Chip-basierten Licht-Prozessierung, der Quanten-Kommunikation und der „Lab-on-Chip-Sensorik“ ermöglichen.

Gregor Koblmüller forscht seit 2009 am Physik-Department und am Walter-Schottky-Institut der TUM. Er ist außerdem Mitglied im Exzellenzcluster Nanosystems Initiative Munich (NIM). 2016 habilitierte er sich an der TUM mit dem Thema „Halbleiter-Nanodrähte“. Seine Arbeit wurde unter anderem mit dem Arnold-Sommerfeld-Preis der Bayerischen Akademie der Wissenschaften ausgezeichnet.

Prof. Dr. Frank Pollmann

Prof. Frank Pollmann
Prof. Frank Pollmann – Photo: A. Heddergott / TUM

Materie tritt in verschiedenen Phasen auf, beispielsweise kann Wasser je nach Temperatur und Druck fest, flüssig oder gasförmig sein. Darüber hinaus existieren jedoch zahlreiche weitere Phasen, in denen das Wechselspiel von Quantenfluktuationen und Wechselwirkung zwischen Elektronen für faszinierende Eigenschaften sorgt – in Supraleitern fließt elektrischer Strom dadurch beispielsweise verlustfrei. Diese Phasen treten in der Regel nur bei niedrigen Temperaturen auf.

Der Forschungsschwerpunkt von Prof. Frank Pollmann liegt auf sogenannten topologischen Phasen, die in Zukunft als Bausteine für Quantencomputer dienen könnten. Als theoretischer Physiker beschäftigt sich Pollmann unter anderem mit der Vorhersage und Klassifizierung von bislang unbekannten Phasen der Materie. In seinem Projekt DYNACQM, das durch den Consolidator Grant ermöglicht wird, will er einen Schritt weitergehen: Es sollen konkrete dynamische Eigenschaften solcher Phasen vorhergesagt und in Modellsystemen simuliert werden. So ließe sich beispielsweise feststellen, welche Materialien sich besonders eignen, um „exotische Phasen“ in technologischen Anwendungen zu realisieren.

Frank Pollmann ist Professor für Theoretische Festkörperphysik an der TUM. Seine Arbeiten wurden unter anderem mit dem Walter-Schottky-Preis der Deutschen Physikalischen Gesellschaft ausgezeichnet. Auch er ist Mitglied im Exzellenzcluster Nanosystems Initiative Munich (NIM).

Prof. Dr. Sherry Suyu

Prof. Sherry Suyu
Prof. Sherry Suyu – Photo: privat

Der sogenannte „starke Gravitationslinseneffekt“ tritt auf, wenn eine größere Massenkonzentration, beispielsweise ein Galaxienhaufen, zwischen der Erde und einem beobachteten Objekt in einer weit entfernten Galaxie liegt. Die Massenkonzentration wirkt wie eine Linse: Lichtstrahlen, die sie auf unterschiedlichen Seiten passieren, werden abgelenkt, so dass mehrere Bilder derselben Quelle entstehen.

In ihrem ERC-geförderten Projekt LENSNOVA wird sich Prof. Sherry Suyu diesen Effekt zunutze machen. Untersucht man Phänomene wie Supernovae, erscheint der Lichtblitz in den Mehrfachbildern aufgrund der unterschiedlichen optischen Pfadlängen ihrer Lichtwege und der Gravitationsverzögerung durch die Linse zu unterschiedlichen Zeiten. Diese Verzögerung enthält wertvolle Informationen über die Geometrie des Universums. Außerdem wird es durch den Gravitationslinseneffekt sogar möglich, auch die Anfänge einer Supernova-Explosion zu studieren. Auf diese Weise hofft man, mehr über die Vorläufer sogenannter Supernovae vom Typ-Ia ebenso wie über Dunkle Energie zu erfahren.

Sherry Suyu ist Professorin für Beobachtende Kosmologie an der TUM und Forschungsgruppenleiterin am Max-Planck-Institut für Astrophysik. Die Doppelmitgliedschaft wird durch das MaxPlanck@TUM-Programm ermöglicht.

Redaktion
Paul Hellmich, Dr. Johannes Wiedersich
Nach oben