Kompakte und langlebige Speicherung von Informationen in magnetischen Wirbeln: Magnetische Monopole löschen Daten
Nachrichten aus dem Physik-Department - 2013-05-31
Ein vor 80 Jahren postuliertes physikalisches Phänomen könnte den entscheidenden Schritt zur Realisierung neuartiger, extrem kompakter und langlebiger Datenspeicher durch magnetische Wirbel liefern. Wissenschaftler der Technischen Universität München (TUM), der Technischen Universität Dresden und der Universität zu Köln fanden heraus, dass die Skyrmionen genannten Wirbelstrukturen mit Hilfe magnetischer Monopole gelöscht werden können.
Jeder kennt den Schulversuch, bei dem Eisenspäne auf ein Blatt Papier verteilt werden, unter dem ein Stabmagnet liegt. Die Späne ordnen sich dabei entlang der Feldlinien aus und zeigen Nord- und Südpol des Magneten. Egal wie oft man ihn teilt, der Stabmagnet weist immer einen Nord- und einen Südpol auf. Anfang der 30er-Jahre des vorigen Jahrhunderts jedoch postulierte der Physiker Paul A. M. Dirac ein Teilchen, das als magnetisches Pendant des Elektrons nur einen der beiden Pole besitzen und nur eine magnetische Elementarladung tragen sollte.
Auf der Suche nach einer einfachen Methode zur Beobachtung der magnetischen Wirbel kooperierten Forscher um TUM-Physiker Prof. Christian Pfleiderer zunächst mit der Gruppe um Professor Lukas Eng an der TU Dresden, die ein Magnet-Kraftmikroskop besitzen. Als sie mit diesem Mikroskop die Oberfläche der Materialien abtasteten, beobachteten sie die Wirbel nicht nur zum ersten Mal direkt sondern auch, dass benachbarte Skyrmionen miteinander verschmelzen.
Computersimulationen der Kölner Kooperationspartner um Professor Achim Rosch und Experimente an der Forschungs-Neutronenquelle FRM II der TUM zeigten, dass hier magnetische Monopole am Werk waren, die die Wirbel wie ein Reißverschluss zusammen ziehen. Damit ist es nicht nur möglich, in Skyrmionen gespeicherte Informationen zu lesen, sondern sie auch wieder zu löschen.
Kompakte und langlebige Datenspeicher
Eine wichtige Anwendung der magnetischen Wirbel könnten zukünftige, extrem kompakte und langlebige Datenspeicher sein. Während man für ein magnetisches Speicherbit einer modernen Festplatte etwa eine Million Atome braucht, sind die kleinsten bekannten Skyrmionen in magnetischen Materialien nur etwa 15 Atome groß.
Gleichzeitig benötigt das Verschieben der Wirbel 100.000 mal weniger Strom als das Verschieben magnetischer Speicherbits auf der Basis konventioneller magnetischer Materialien, so dass man Informationen so besonders kontrolliert verarbeiten könnte. Die vielleicht interessanteste Eigenschaft der Skyrmionen ist jedoch, dass sie wie ein Knoten in einer Schnur, besonders stabil sind.
Entdeckt wurden die magnetischen Wirbelstrukturen im Jahre 2009 bei Neutronenstreu-Experimenten an Mangansilizid in der Forschungs-Neutronenquelle FRM II durch ein Team um Christian Pfleiderer und Achim Rosch. Seit dem verzeichnet das neue Forschungsgebiet weltweit großes Interesse und rasante Fortschritte. „Waren zunächst extrem tiefe Temperaturen nötig, so sind heute auch Materialien bekannt, in denen Skyrmionen bei Raumtemperatur auftreten“, sagt Christian Pfleiderer, Professor für magnetische Materialien der TU München.
„Mit der magnetischen Kraftmikroskopie haben wir endlich eine Methode zur Hand, die uns zum ersten mal erlaubt die Skyrmionen in Anwendungsrelevanten Systemen direkt zu beobachten. Dies ist ein entscheidender Schritt in Richtung einer echten technischen Nutzung.“
Die Arbeiten wurden gefördert aus Mitteln des European Research Council, der Deutschen Forschungsgemeinschaft, des Australian Research Council, der TUM Graduate School und der Bonn-Cologne Graduate School.
- Redaktion
- Dr. Andreas Battenberg
Veröffentlichung
Unwinding of a Skyrmion Lattice by Magnetic Monopoles
P. Milde, D. Köhler, J. Seidel, L. M. Eng, A. Bauer, A. Chacon, J. Kindervater, S. Mühlbauer, C. Pfleiderer, S. Buhrandt, C. Schütte, A. Rosch
Science 31 May 2013: 340 (6136), 1076-1080. [DOI:10.1126/science.1234657]
Kontakt
Prof. Dr. Christian Pfleiderer
Technische Universität München
Physik-Department
T: +49 89 289-14720