Wichtiger Hinweis / Important notice

Die Webseite www.ph.tum.de wurde am 31.03.2023 eingefroren. Mit dem Zusammenschluss der Fakultäten Chemie und Physik zur TUM School of Natural Scienes finden Sie aktuelle Informationen dort.

The website www.ph.tum.de was frozen on 31.03.2023. With the merger of the Faculties of Chemistry and Physics to form the TUM School of Natural Sciences, you will now find up-to-date information there.

https://www.nat.tum.de

Röntgenmikroskopie-Methode zeigt Fluktuationen im Inneren von Materialien

Röntgenmikroskopie-Methode zeigt Fluktuationen im Inneren von Materialien

Nachrichten aus dem Physik-Department - 2013-02-07

Versuchsaufbau des Röntgen-Mikroskopie-Verfahrens: Während die Probe mit Nanometer-Präzision durch den Strahl bewegt wird, fängt der Detektor die Streubilder auf, aus denen das Bild der Probe rekonstruiert wird. (Bild: Pierre Thibault, TUM)

Mikroskopie mit Röntgenstrahlen erfordert eine extrem hohe Qualität der Strahlung. Auch Gerät und Probe dürfen sich während der Aufnahme nicht im Geringsten bewegen. Forscher der Technischen Universität München und des Paul Scherrer Instituts in Villigen (Schweiz), haben nun eine Methode entwickelt, mit der man diese Einschränkungen lockern kann. Mit ihr lassen sich sogar Fluktuationen im Material abbilden. Über ihre Ergebnisse berichtet jetzt das Fachmagazin Nature.

Seit mehr als 100 Jahren heißt es bei jeder Röntgenaufnahme: Stillhalten! Will man Nanostrukturen wie den Aufbau biologischer Zellen, die poröse Struktur von Zement oder Speicherfelder magnetischer Datenträger abbilden, müssen Probe und Röntgenmikroskop daher extrem vibrationsarm sein. Zusätzlich muss mithilfe spezieller Filter aus der ankommenden Röntgenstrahlung der Anteil mit den richtigen Eigenschaften ausgewählt werden – zum Beispiel die richtige Wellenlänge.

Beiträge verschiedener Wellenlängen getrennt

Pierre Thibault von der Technischen Universität München und Andreas Menzel, Wissenschaftler am Paul Scherrer Institut (Villigen, Schweiz), haben nun eine Methode entwickelt, die trotz Vibrationen oder Fluktuationen zuverlässige Bilder produziert. Die Methode basiert auf einer Technik namens „Ptychographie“. Sie wurde in den 1960er Jahren für die Elektronenmikroskopie entwickelt. Die Ergebnisse der Forscher ermöglichen es nun in einem Bild Effekte voneinander zu unterscheiden, die von den Lichtanteilen verschiedener Wellenlängen stammen.

Im linken Bild ist eine Aufnahme mit herkömmlicher Technik zu sehen. Deutlich sichtbar sind Bildstörungen. Details der Probe werden nicht zuverlässig abgebildet. Eine sehr viel bessere Bildqualität zeigt das rechte Bild, das mit der neuen Methode aufgenommen wurde.Im Vergleich zu einer Aufnahme mit herkömmlicher Technik (links) wird die Verbesserung der Bildqualität durch die neue Methode (rechts) deutlich. (Bild: Pierre Thibault, TUM)

Fluktuationen sichtbar gemacht

Das wahrscheinlich bedeutsamste Ergebnis der Arbeit ist, dass damit eine ganze Klasse von Objekten abgebildet werden kann, die man bisher kaum untersuchen konnte. „Wir können nicht nur Vibrationen im Mikroskop kompensieren“, sagt Andreas Menzel. „Wir können sogar Fluktuationen der Probe selber charakterisieren, auch wenn sie viel zu schnell sind, als dass wir sie mit einzelnen Momentaufnahmen festhalten könnten.“

„Um uns zu vergewissern, dass die Bilder, die wir produzierten, tatsächlich die Proben und ihre Dynamik genau wiedergaben“, sagt Pierre Thibault „führten wir Computersimulationen durch. Sie bestätigten, dass sowohl Effekte des Instruments als auch der Proben selbst, wie zum Beispiel Ströme, Schaltvorgänge oder bestimmte Quantenzustände, charakterisiert werden können.“

Mikroskopischer Blick ins Innere

Die neue Methode verbindet die Charakterisierung dynamischer Zustände mit hochauflösender Röntgenmikroskopie. Eine mögliche Anwendung besteht darin, die wechselnde Magnetisierung einzelner Bits in magnetischen Speichermedien mit hoher Speicherdichte zu untersuchen. Sichtbar gemacht werden können auch Wechselwirkungen einzelner magnetischer Bits oder ihre thermischen Fluktuationen, die letztlich die Lebensdauer magnetischer Datenspeicherung bestimmen.

„Neben dem Einsatz in bildgebenden Verfahren“, erläutert Pierre Thibault, „hat unsere Analyse aber auch eine grundlegende Verwandtschaft zu anderen Fachbereichen offenbart. Mikroskopie und Wissenschaftsdisziplinen, wie zum Beispiel Quanteninformatik, die bisher als unabhängig galten, können hierbei voneinander profitieren.”

Publikation:

Reconstructing state mixtures from diffraction measurements

Pierre Thibault, Andreas Menzel

Nature, 7. February 2013, DOI: 10.1038/nature11806

Kontakt:

Dr. Pierre Thibault

Technische Universität München

Physik-Department, Lehrstuhl für Angewandte Biophysik (E 17)

85747 Garching, Germany

Tel.: +49 89 289 14397

E-Mail: pierre.thibault@tum.de

Nach oben