Experimentelle Methoden in der Quantenoptik
Experimental Techniques in Quantum Optics

Modul PH7017

Dieses Modul ist ein Angebot der Ludwig-Maximilians-Universität München (LMU). Es steht TUM-Studierenden nur im Rahmen eines gemeinsamen Studiengangs (z. B. M. Sc. Quantum Science & Technology) offen.

Diese Modulbeschreibung enthält neben den eigentlichen Beschreibungen der Inhalte, Lernergebnisse, Lehr- und Lernmethoden und Prüfungsformen auch Verweise auf die aktuellen Lehrveranstaltungen und Termine für die Modulprüfung in den jeweiligen Abschnitten.

Basisdaten

PH7017 ist ein Semestermodul in Englisch auf das im Sommersemester angeboten wird.

Das Modul ist Bestandteil der folgenden Kataloge in den Studienangeboten der Physik.

  • Fokussierungsrichtung Experimentelle Quantenwissenschaften & -technologien im M.Sc. Quantum Science & Technology

Soweit nicht beim Export in einen fachfremden Studiengang ein anderer studentischer Arbeitsaufwand ("Workload") festgelegt wurde, ist der Umfang der folgenden Tabelle zu entnehmen.

GesamtaufwandPräsenzveranstaltungenUmfang (ECTS)
180 h 60 h 6 CP

Inhaltlich verantwortlich für das Modul PH7017 ist Monika Aidelsburger.

Inhalte, Lernergebnisse und Voraussetzungen

Inhalt

Ever improving measurements and control in the field of quantum optics have enabled today’s most precise measurements of time as well as atomic gases at the coldest temperatures ever recorded. This module introduces key experimental techniques used in such experiments, focusing on practical applications in the laboratory. Subjects will include random processes and noise, control theory and feedback loops, electronics, photon detection, and optical elements. We will also touch on several practical applications of the techniques and methods introduced in the lecture, focusing on the stabilization of laser light

Lernergebnisse

After successful completion of the module the students are able to:

  1. Describe how random processes give rise to noise and its spectral features
  2. Explain open-loop and closed-loop response in frequency space
  3. Understand stability and instability in feedback loops
  4. Design simple proportional, integral, and derivative (PID) feedback loops to suppress noise
  5. Design simple electronic circuits for the amplified detection of light
  6. Design simple optical setups to control the spatial profile, intensity, phase, and polarization of laser light
  7. Understand various aspects of stabilization techniques for laser phase and intensity

Voraussetzungen

No preconditions in addition to the requirements for the Master’s program in Quantum Science and Technology.

Lehrveranstaltungen, Lern- und Lehrmethoden und Literaturhinweise

Lehrveranstaltungen und Termine

Lern- und Lehrmethoden

The module consists of lectures (2 SWS) and tutorial classes (2 SWS). The main teaching material will typically be presented on the blackboard, or a tablet computer and projector, supplemented by computer presentation slides to show important research results. Where applicable, devices from the laboratory will be physically shown. Weekly problem sets are offered to comprehend the lecture content better and improve their familiarity with them. The solutions to the problem sets are discussed in the weekly exercise classes.

Medienformen

Blackboard / tablet computer, computer presentation slides

Literatur

  • P. C. D. Hobbs, Building Electro-Optical Systems: Making it all Work (Wiley)
  • P. Horowitz and W. Hill, The Art of Electronics (Cambridge University Press)
  • B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley)

Modulprüfung

Beschreibung der Prüfungs- und Studienleistungen

There will be an oral exam of 25 minutes duration. Therein the achievement of the competencies given in section learning outcome is tested exemplarily at least to the given cognition level using comprehension questions and sample calculations.

For example an assignment in the exam might be:

  • Derivation of simple relationships relevant for key concepts in the lecture such as the transfer function of a closed loop linear-response system
  • Calculation of important quantities from simple expressions such as the poles of a transfer function
  • Explanation of the working principle and features of devices introduced in the lecture such as the response of semiconductor photo detectors
  • Show how techniques such as laser intensity stabilization can be applied in the laboratory

Wiederholbarkeit

Eine Wiederholungsmöglichkeit wird am Semesterende angeboten.

Nach oben