Festkörper-Quantenvielteilchensysteme und Feldtheorie 1
Condensed Matter Quantum Many-Body Systems and Field Theory 1
Modul PH7010
Diese Modulbeschreibung enthält neben den eigentlichen Beschreibungen der Inhalte, Lernergebnisse, Lehr- und Lernmethoden und Prüfungsformen auch Verweise auf die aktuellen Lehrveranstaltungen und Termine für die Modulprüfung in den jeweiligen Abschnitten.
Basisdaten
PH7010 ist ein Semestermodul in Englisch auf Master-Niveau das im Sommersemester angeboten wird.
Das Modul ist Bestandteil der folgenden Kataloge in den Studienangeboten der Physik.
- Fokussierungsrichtung Theoretische Quantenwissenschaften & -technologien im M.Sc. Quantum Science & Technology
Soweit nicht beim Export in einen fachfremden Studiengang ein anderer studentischer Arbeitsaufwand ("Workload") festgelegt wurde, ist der Umfang der folgenden Tabelle zu entnehmen.
Gesamtaufwand | Präsenzveranstaltungen | Umfang (ECTS) |
---|---|---|
270 h | 90 h | 9 CP |
Inhaltlich verantwortlich für das Modul PH7010 ist Jan von Delft.
Inhalte, Lernergebnisse und Voraussetzungen
Inhalt
The aim of this module is to learn basic methods of modern quantum many-body theory and to apply them to various problems in condensed matter physics. The module starts with an introduction to second quantization and its application to paradigmatic models of interacting electrons, such as the Hubbard- and Heisenberg models, the Bogoliubov theory of weakly interacting bosons, Hartree-Fock mean-field theory and the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity. The subsequent, main part of this module develops functional integral techniques for bosons and fermions in the finite-temperature Matsubara formalism, discusses Green’s functions and their analytic properties, and introduces perturbation theory using Feynman diagrams and elementary non-perturbative methods such as the Hubbard-Stratonovich transformation. These methods are then used to study properties of interacting electron systems (random-phase approximation, screening and plasmon excitations) and to discuss Fermi liquid theory. The next chapter covers the linear response formalism (Kubo formula) as the central tool to establish a connection between theoretically computable correlation functions and experimental observables. The final core topic is an extended discussion of the BCS theory of superconductivity, starting from the functional integral representation.
Lernergebnisse
After completing the Module the student is able to:
-
Understand and apply the formalism of second quantization to study interacting quantum many-particle systems.
-
Explain the main ideas behind common approximation schemes, in particular mean-field theory and the Bogoliubov transformation.
-
Understand the functional integral representation of partition functions, manipulate functional integrals, and apply a Hubbard-Stratonovich decoupling.
-
Explain the properties of Green’s functions and their use in diagrammatic perturbation theory.
-
Understand and use the linear response formalism to compute experimental observables of interacting many-particle systems.
-
Understand the theory of BCS superconductivity.
-
Follow current research topics and use the toolbox of many-body methods to start independent research.
Voraussetzungen
Quantum mechanics, statistical physics, solid state physics, at the level of elementary modules from a Bachelor’s degree in physics.
Lehrveranstaltungen, Lern- und Lehrmethoden und Literaturhinweise
Lehrveranstaltungen und Termine
Art | SWS | Titel | Dozent(en) | Termine | Links |
---|---|---|---|---|---|
VO | 4.0 | TMP-TA3: Condensed Matter Many-Body-Physics and Field Theory I | Bohrdt, F. | siehe LSF der LMU München |
Aktuelles |
UE | 2.0 | Übungen zu TMP-TA3: Condensed Matter Many-Body-Physics and Field Theory I | Moroder, M. Bohrdt, F. | siehe LSF der LMU München |
Aktuelles |
Lern- und Lehrmethoden
The module consists of a lecture series (4 SWS) and exercise classes (2 SWS), comprising two lecture sessions and one exercise session per week.
The main teaching material is presented on the blackboard or by beamer. Lectures are supplemented by weekly problem sets, deepening the understanding of core concepts through concrete calculations. Solutions to the problem sets are discussed in the exercise sessions.
Participation in the exercise classes is strongly recommended, since the exercises are aids for acquiring a deeper understanding of the core tools of condensed matter many-body physics and field theory and for practicing to solve typical exam problems.
Medienformen
Power point and Keynote presentations, blackboard.
Literatur
Standard textbooks on many-body theory, e.g.:
-
„Condensed Matter Field Theory“, A. Altland, B. Simons, Cambridge University Press
-
„Introduction to Many-Body Physics“, P. Coleman, Cambridge University Press
-
"Many-Body Quantum Theory in Condensed Matter Physics: An Introduction“, H. Bruus, K. Flensberg, Oxford University Press
-
„Quantum Many-Particle Systems“, J.W. Negele, H. Orland, Perseus Books
-
„Many-particle physics“, G.D. Mahan, Springer
-
„Interacting Electrons and Quantum Magnetism“, A. Auerbach, Springer
Modulprüfung
Beschreibung der Prüfungs- und Studienleistungen
There will be a written exam of 180 minutes duration. Therein the achievement of the competencies given in section learning outcome is tested exemplarily at least to the given cognition level using conceptual questions and computational tasks.
For example an assignment in the exam might be:
- What is Fock space?
- How does the mean-field approximation work?
- Write down the functional integral representation of the partition function for electrons with pairwise interactions.
- What is the difference between the retarded and the advanced Green’s function?
- What are the Kramers-Kronig relations?
- Explain the Dyson-equation and its relation to the self-energy operator.
- What is the random phase approximation?
- How is the electrical conductivity related to the current-current correlation function?
- What is a plasmon and how does its dispersion look like?
Wiederholbarkeit
Eine Wiederholungsmöglichkeit wird am Semesterende angeboten.
Aktuell zugeordnete Prüfungstermine
Derzeit sind in TUMonline die folgenden Prüfungstermine angelegt. Bitte beachten Sie neben den oben stehenden allgemeinen Hinweisen auch stets aktuelle Ankündigungen während der Lehrveranstaltungen.
Titel | |||
---|---|---|---|
Zeit | Ort | Info | Anmeldung |
Prüfung zu Festkörper-Quantenvielteilchensysteme und Feldtheorie 1 | |||
Mo, 17.7.2023 bis 23:55 | Dummy-Termin. Wenden Sie sich zur individuellen Terminvereinbarung an die/den Prüfer(in). Anmeldung für Prüfungstermin vor 16.09.2023. // Dummy date. Contact examiner for individual appointment. Registration for exam date before 2023-Sep-16. | bis 30.6.2023 (Abmeldung bis 16.7.2023) | |
Mo, 18.9.2023 bis 23:55 | Dummy-Termin. Wenden Sie sich zur individuellen Terminvereinbarung an die/den Prüfer(in). Anmeldung für Prüfungstermin zwischen 18.09.2023 und 21.10.2023. // Dummy date. Contact examiner for individual appointment. Registration for exam date between 2023-Sep-18 and 2023-Oct-21. | bis 17.9.2023 |