Quantenkommunikation
Quantum Communication
Modul PH7005
Diese Modulbeschreibung enthält neben den eigentlichen Beschreibungen der Inhalte, Lernergebnisse, Lehr- und Lernmethoden und Prüfungsformen auch Verweise auf die aktuellen Lehrveranstaltungen und Termine für die Modulprüfung in den jeweiligen Abschnitten.
Basisdaten
PH7005 ist ein Semestermodul in Englisch auf Master-Niveau das im Wintersemester angeboten wird.
Das Modul ist Bestandteil der folgenden Kataloge in den Studienangeboten der Physik.
- Fokussierungsrichtung Experimentelle Quantenwissenschaften & -technologien im M.Sc. Quantum Science & Technology
Soweit nicht beim Export in einen fachfremden Studiengang ein anderer studentischer Arbeitsaufwand ("Workload") festgelegt wurde, ist der Umfang der folgenden Tabelle zu entnehmen.
Gesamtaufwand | Präsenzveranstaltungen | Umfang (ECTS) |
---|---|---|
90 h | 60 h | 3 CP |
Inhaltlich verantwortlich für das Modul PH7005 ist Harald Weinfurter.
Inhalte, Lernergebnisse und Voraussetzungen
Inhalt
This module provides an introduction to quantum communication methods. Starting from quantum key distribution the module gives an overview of various methods like quantum teleportation and entanglement swapping, all the way to the design of efficient communication within a quantum network. The module introduces the basic theoretical concepts as well as the various tools and developments necessary to implement the new methods in real world scenarios.
Lernergebnisse
After completing the Module the student is able to:
-
Understand basic quantum communication methods and their relation to conventional communication systems.
-
Understand the concepts of proofing the security and means to distill secure key of observed detection events.
-
Understand entanglement based quantum communication methods.
-
Understand basic quantum logic gate operations required, e.g., for entanglement purification and Bell state analysis.
-
Understand the basic components in quantum communication implementations like laser diodes, generation of entangled photons, single photon detectors, coherent detection methods, quantum memories and systems suitable to implement quantum logic operations.
-
Understand possible applications possible in quantum networks like distributed computation, efficient communication, scheduling, voting etc.
Voraussetzungen
No prerequisites beyond the requirements for the Master’s program in Quantum Science and Technology.
Lehrveranstaltungen, Lern- und Lehrmethoden und Literaturhinweise
Lehrveranstaltungen und Termine
Art | SWS | Titel | Dozent(en) | Termine | Links |
---|---|---|---|---|---|
VO | 2.0 | Quantum Communication | Weinfurter, H. | siehe LSF der LMU München |
Aktuelles |
Lern- und Lehrmethoden
The module consists of a lecture series (3 SWS) and exercise classes (1 SWS) per week.
The main teaching material will be presented on the blackboard. This will be supplemented by power point / keynote / impress presentations to summarize / illustrate important results and discuss state-of-the-art research. Problem sets are offered to obtain a better comprehension of the lecture contents and to improve their familiarity with them. The exercise sessions are used to discuss the solutions to the problem sets and original publications related to the module.
Participation in the exercise classes is strongly recommended since the exercises prepare for the problems of the exam and rehearse the specific competencies.
Medienformen
Power point, One Note, Impress presentation.
Literatur
Special chapters in standard textbooks on quantum information, e.g.:
-
Lectures on Quantum Information, eds. D. Bruß, G. Leuchs, Wiley 2007. (als LMU-UB e-book)
-
The Physics of Quantum Information, eds. D. Bouwmeester, A. Ekert, A. Zeilinger, (Springer-Verlag Berlin) 2000.
-
Quantum Computation and Quantum Information, M. Nielsen, I. Chuang (Cambridge University Press) 2001. (als LMU-UB e-book)
Modulprüfung
Beschreibung der Prüfungs- und Studienleistungen
There will be a written exam of 120 minutes duration. Therein the achievement of the competencies given in section learning outcome is tested exemplarily at least to the given cognition level using conceptual questions and computational tasks.
For example an assignment in the exam might be:
- Describe the protocol for quantum key distribution
- Describe the principles and pros and cons of various single photon detectors
- Show the polynomial scaling of the resources for the quantum repeater
Wiederholbarkeit
Eine Wiederholungsmöglichkeit wird am Semesterende angeboten.