Quantenoptik 1
Quantum Optics 1
Modul PH7001
Diese Modulbeschreibung enthält neben den eigentlichen Beschreibungen der Inhalte, Lernergebnisse, Lehr- und Lernmethoden und Prüfungsformen auch Verweise auf die aktuellen Lehrveranstaltungen und Termine für die Modulprüfung in den jeweiligen Abschnitten.
Basisdaten
PH7001 ist ein Semestermodul in Englisch auf Master-Niveau das im Wintersemester angeboten wird.
Das Modul ist Bestandteil der folgenden Kataloge in den Studienangeboten der Physik.
- Fokussierungsrichtung Experimentelle Quantenwissenschaften & -technologien im M.Sc. Quantum Science & Technology
Soweit nicht beim Export in einen fachfremden Studiengang ein anderer studentischer Arbeitsaufwand ("Workload") festgelegt wurde, ist der Umfang der folgenden Tabelle zu entnehmen.
Gesamtaufwand | Präsenzveranstaltungen | Umfang (ECTS) |
---|---|---|
270 h | 90 h | 9 CP |
Inhaltlich verantwortlich für das Modul PH7001 ist Immanuel Bloch.
Inhalte, Lernergebnisse und Voraussetzungen
Inhalt
This module gives an introduction to the wide field of quantum optics. Subjects will include: from ray to wave optics, Gaussian beams, field quantization, Fock states, coherent states, squeezed states, thermal states, two level systems, Jaynes-Cummings and dressed atoms as well as measurable consequences of the electromagnetic vacuum. If time permits I will touch some aspects of correlations and photon statistics as well as topics on quantum information such as teleportation and quantum cryptography.
Lernergebnisse
After completing the Module the student is able to:
-
Explain and calculate the properties of field states.
-
Discuss various phenomena related to quantized light-atom interaction in two-level systems based on the Jaynes-Cummings-Model.
-
Explain various experimental settings that can be used to study important quantum phenomena, such as vacuum Rabi oscillations or non-destructive measurements of photons.
-
Understand various aspects of the quantum vacuum such as spontaneous emission, Purcell effect, Casimir force and the Lamb shift.
-
Understand coherence phenomena and correlation functions.
-
Understand the role of entanglement and the generation of entangled photon pairs.
Voraussetzungen
No prerequisites beyond the requirements for the Master’s program in Quantum Science and Technology.
Lehrveranstaltungen, Lern- und Lehrmethoden und Literaturhinweise
Lehrveranstaltungen und Termine
Art | SWS | Titel | Dozent(en) | Termine | Links |
---|---|---|---|---|---|
VO | 4.0 | Quantum Optics I | Bloch, I. | siehe LSF der LMU München |
Aktuelles |
UE | 2.0 | Übungen zu Quantum Optics I | Bloch, I. | siehe LSF der LMU München |
Aktuelles |
Lern- und Lehrmethoden
The module consists of a lecture series (4 SWS) and exercise classes (2 SWS).
During lecture the teaching material will be presented on the blackboard. Problem sets are offered to obtain a better comprehension of the lecture content and to improve the familiarity with them. The solutions to these problem sets are discussed in exercise sessions.
Participation in the exercise classes is strongly recommended, since the exercises are aids for acquiring a deeper understanding of the core concepts of the course and for practicing to solve typical exam problems.
Medienformen
Blackboard
Literatur
Standard textbooks of quantum optics, for example:
-
Quantum Optics, Mark Fox, Oxford University Press: Elementary introduction to quantum optics
-
The Quantum Theory of Light, Rodney Loudon, Oxford University Press: Classic quantum optics textbook, which provides a very good introduction (no discussion of modern experiments)
-
Quantum Optics, Marlan O. Scully, and M. Suhail Zubairy, Cambridge University Press: Advanced textbook on quantum optics (modern notation)
-
Quantum Electronics, A.Yariv, Wiley & Sons 1988
-
Fundamentals of Photoncs, B.E.A.Saleh & M.C.Teich, Wiley & Sons 1991
-
Quantum Optics, D.F. Walls & G.J. Milburn, Springer 2006
Modulprüfung
Beschreibung der Prüfungs- und Studienleistungen
There will be a written exam of 120 minutes duration. Therein the achievement of the competencies given in section learning outcome is tested exemplarily at least to the given cognition level using conceptual questions and computational tasks.
For example an assignment in the exam might be:
- Discuss the light-atom interaction for a two-level atom interacting with a classical single-frequency light field – describe the evolution of the Bloch vector for resonant/off-resonant illumination, and the effect of spontaneous emission on this evolution.
- Calculate various properties of field states, for example Fock states and Coherent states.
- Derivation and discussion of the Jaynes-Cummings model.
- Computation of correlation functions and discussion of coherence in beam-splitter/interferometer-type setups for classical / non-classical light sources.
- Discuss beam-splitter/interferometer-type settings.
Wiederholbarkeit
Eine Wiederholungsmöglichkeit wird am Semesterende angeboten.