Halbleiter-Quantenelektronik
Semiconductor Quantum Electronics
Modul PH2290
Modulversion vom SS 2022 (aktuell)
Von dieser Modulbeschreibung gibt es historische Versionen. Eine Modulbeschreibung ist immer so lange gültig, bis sie von einer neuen abgelöst wird.
Ob die Lehrveranstaltungen des Moduls in einem spezifischen Semester angeboten werden, finden Sie im Abschnitt Lehrveranstaltungen, Lern- und Lehrmethoden und Literaturhinweise unten.
verfügbare Modulversionen | ||
---|---|---|
SS 2022 | SS 2021 | SS 2020 |
Basisdaten
PH2290 ist ein Semestermodul in Englisch auf Master-Niveau das im Sommersemester angeboten wird.
Das Modul ist Bestandteil der folgenden Kataloge in den Studienangeboten der Physik.
- Spezifischer Spezialfachkatalog Physik der kondensierten Materie
- Spezifischer Spezialfachkatalog Applied and Engineering Physics
- Fokussierungsrichtung Experimentelle Quantenwissenschaften & -technologien im M.Sc. Quantum Science & Technology
- Komplementärer Spezialfachkatalog Kern-, Teilchen- und Astrophysik
- Komplementärer Spezialfachkatalog Biophysik
Soweit nicht beim Export in einen fachfremden Studiengang ein anderer studentischer Arbeitsaufwand ("Workload") festgelegt wurde, ist der Umfang der folgenden Tabelle zu entnehmen.
Gesamtaufwand | Präsenzveranstaltungen | Umfang (ECTS) |
---|---|---|
150 h | 60 h | 5 CP |
Inhaltlich verantwortlich für das Modul PH2290 ist Martin Brandt.
Inhalte, Lernergebnisse und Voraussetzungen
Inhalt
Semiconductor-based quantum electronic devices and circuits play a pivotal role in the current development of processors for quantum computing, in particular since they can be integrated with the highly versatile existing microelectronics. Furthermore, these devices are fabricated using identical technology. The aim of this module is to introduce the students to the current concepts for semiconductor-based nanoelectronics for quantum applications, with a focus on electrostatically defined quantum dots and donors as the elementary quantum bits (qubits). The module will introduce the basic physics, the fabrication and the operational principles of these qubits and will discuss the current status of both approaches with respect, e.g., to relaxation, decoherence and scalability. For the manipulation of these qubits, magnetic resonance is used, which will be briefly reviewed.
Specific topics will include:
Review of fundamental semiconductor physics
crystal structure, band structure, excitons, dopants
Materials for semiconductor quantum electronics
Si, SiGe, III-V semiconductors including GaAs/AlGaAs, isotope engineering, heterostructures
Fabrication of devices for quantum electronics
molecular beam epitaxy, electron beam lithography, single ion implantation, STM lithography
Two-dimensional electron gases
electrostatics, diffusive and ballistic transport, g-factor
Review of spin physics
electron and nuclear spins, magnetic resonance, relaxation and decoherence
Electrostatically defined quantum dots
electronic transport, Coulomb diamond, single electron transistor, capacitance model, spin states, spin-to-charge conversion, Kondo effect
Spin interaction with the environment
spin orbit interaction, hyperfine interaction
Coupled quantum dots
electronic properties, spin blockade, hyperfine effects
Spin physics of dopants
g-factor, hyperfine coupling, quadrupole interaction
Electrically detected magnetic resonance
Single donor spins
readout via SET, coupling of donors, hyperfine effects
Comparison of quantum electronic systems discussed
Quantum processors
topologies, quantum state transfers, the current state-of-the-art of such processors, challenges
Hybrid quantum systems
with microwaves, optical photons and/or phonons
Lernergebnisse
After participation in the Module the student is able to:
-
Understand the rationale for building semiconductor-based quantum electronic devices and circuits.
-
Explain the fundamental principles of quantum-dot- and donor-based quantum bits, including the physics of two-dimensional electron gases.
-
Understand which semiconductor nanostructures are used to generate, manipulate and detect electron and spin qubits, why they are used and how they are fabricated.
-
Explain the fundamentals of magnetic resonance and its elementary pulse sequences.
-
Sketch how these qubits are operated and what is observed.
-
Understand how quantum processors are being developed from elementary one- and two-qubit systems.
-
Understand and quantify the current limits of these qubits with respect to relaxation and decoherence.
-
Judge new concepts for semiconductor-based qubits.
Voraussetzungen
Keine Vorkenntnisse nötig, die über die Zulassungsvoraussetzungen zum Masterstudium hinausgehen.
Lehrveranstaltungen, Lern- und Lehrmethoden und Literaturhinweise
Lehrveranstaltungen und Termine
Art | SWS | Titel | Dozent(en) | Termine | Links |
---|---|---|---|---|---|
VO | 2 | Semiconductor Quantum Electronics | Brandt, M. |
Do, 10:00–12:00, ZNN 0.001 |
eLearning Unterlagen |
UE | 1 | Übung zu Halbleiter-Quantenelektronik |
Leitung/Koordination: Brandt, M. |
Termine in Gruppen |
Lern- und Lehrmethoden
The module consists of a lecture series and exercise classes.
The blackboard is used for the introduction of physical concepts and quantitative analyses. Overhead projection is used for the discussion of experimental set-ups and results. Students are required to read selected research publications.
Medienformen
Combined Power Point and blackboard presentation plus research publications.
Literatur
- Thomas Ihn, Semiconductor Nanostructures, Oxford University Press
- Yuli Nazarov and Yaroslav M. Blanter, Quantum Transport, Cambridge University Press
- R. Hanson et al., Reviews of Modern Physics 79, 1217 (2007)
- Floris A. Zwanenburg et al., Silicon Quantum Electronics, Reviews of Modern Physics 85, 961 (2013)
- and topical research papers
Modulprüfung
Beschreibung der Prüfungs- und Studienleistungen
There will be an oral exam of 25 minutes duration. Therein the achievement of the competencies given in section learning outcome is tested exemplarily at least to the given cognition level using comprehension questions and sample calculations.
For example an assignment in the exam might be:
- How do you fabricate a quantum dot?
- With which accuracy can you place a single donor? Which technology would you use?
- What is spin diffusion and how can you suppress it?
- Sketch and explain the stability diagram of a coupled quantum dot!
- What are the pros and cons of using a heavier donor such as 75As as compared to 31P?
- How would you realize coherence transfer to a nuclear spin?
Participation in the exercise classes is strongly recommended since the exercises prepare for the problems of the exam and rehearse the specific competencies.
Wiederholbarkeit
Eine Wiederholungsmöglichkeit wird am Semesterende angeboten.
Aktuell zugeordnete Prüfungstermine
Derzeit sind in TUMonline die folgenden Prüfungstermine angelegt. Bitte beachten Sie neben den oben stehenden allgemeinen Hinweisen auch stets aktuelle Ankündigungen während der Lehrveranstaltungen.
Titel | |||
---|---|---|---|
Zeit | Ort | Info | Anmeldung |
Prüfung zu Halbleiter-Quantenelektronik | |||
Mi, 11.10.2023, 13:30 bis 15:00 | 2503 2503 |
bis 25.9.2023 (Abmeldung bis 4.10.2023) |