Energie-Materialien 1
Energy Materials 1
Modul PH2201
Modulversion vom WS 2022/3 (aktuell)
Von dieser Modulbeschreibung gibt es historische Versionen. Eine Modulbeschreibung ist immer so lange gültig, bis sie von einer neuen abgelöst wird.
Ob die Lehrveranstaltungen des Moduls in einem spezifischen Semester angeboten werden, finden Sie im Abschnitt Lehrveranstaltungen, Lern- und Lehrmethoden und Literaturhinweise unten.
verfügbare Modulversionen | |||||
---|---|---|---|---|---|
WS 2022/3 | WS 2021/2 | WS 2020/1 | WS 2019/20 | WS 2018/9 | SS 2014 |
Basisdaten
PH2201 ist ein Semestermodul in Englisch auf Master-Niveau das im Wintersemester angeboten wird.
Das Modul ist Bestandteil der folgenden Kataloge in den Studienangeboten der Physik.
- Spezifischer Spezialfachkatalog Physik der kondensierten Materie
- Spezifischer Spezialfachkatalog Applied and Engineering Physics
- Komplementärer Spezialfachkatalog Kern-, Teilchen- und Astrophysik
- Komplementärer Spezialfachkatalog Biophysik
Soweit nicht beim Export in einen fachfremden Studiengang ein anderer studentischer Arbeitsaufwand ("Workload") festgelegt wurde, ist der Umfang der folgenden Tabelle zu entnehmen.
Gesamtaufwand | Präsenzveranstaltungen | Umfang (ECTS) |
---|---|---|
150 h | 30 h | 5 CP |
Inhaltlich verantwortlich für das Modul PH2201 ist Aliaksandr Bandarenka.
Inhalte, Lernergebnisse und Voraussetzungen
Inhalt
The aim of this module is to provide students with a broad overview over functional materials currently employed or investigated for the energy provision, conversion and storage. Rather than dealing with the physical and chemical basics of energy conversion and storage, the module will focus on the many diverse materials used in this field and explain their important properties in terms of specific functionality and quantitative figures of merit.
Content:
- Fuels: energy content, production, price, sustainability
- Materials for energy conversion
- Materials for fuel cells (membranes, anodes, cathodes, catalysts)
- Photovoltaic materials (semiconductors, thin films, materials for sensitization)
- Photocatalytic materials
- Materials for energy storage: batteries, supercapacitors
- Environmental aspects: availability, recycling and life-cycle assessment of energy materials.
Lernergebnisse
After successful completion of this module, the students are able to:
- identify the most important materials in the field of energy science
- explain the working principles of energy conversion and storage devices (batteries, fuel cells, solar cells supercapacitors etc)
- name factors which determine the performance of functional materials for these devices
- analyse and evaluate pros and cons for future viability of functional materials for energy provision, conversion and storage
Voraussetzungen
No preconditions in addition to the requirements for the Master's program in Physics.
Lehrveranstaltungen, Lern- und Lehrmethoden und Literaturhinweise
Lehrveranstaltungen und Termine
Art | SWS | Titel | Dozent(en) | Termine | Links |
---|---|---|---|---|---|
VO | 2 | Energy Materials 1 | Bandarenka, A. |
Fr, 10:00–12:00, PH HS3 |
eLearning |
Lern- und Lehrmethoden
Lectures, seminars (master students), presentations
The students are supposed to read literature, which is provided in the lecture slides and TUM Moodle system, as there are no exercise classes attributed to these lectures.
The students can however visit complimentary seminars on Energy Materials 1 after the lectures.
Medienformen
- PowerPoint presentations with incorporated animations.
- interactive discussions and explanations using the black board.
- lecture PDFs with the links to the relevant literature are available before and after the lecture in TUM Moodle.
- Key literature including relevant journal publications are available at TUM Moodle in the sections corresponding to the particular lectures
Literatur
- B. Dunn, H. Kamath, J.M. Tarascon: Electrical Energy Storage for the Grid: A Battery of Choices, Science (2011), 334 (6058), 928-935.
- P.C. Vesborg, T.F. Jaramillo: Addressing the Terawatt Challenge: Scalability in the Supply of Chemical Elements for Renewable Energy, RSC Adv. (2012), 2 (21), 7933-7947.
The literature to this lecture is based on the scientific research articles referred to in the lecture slides and partly available at TUM Moodle in the sections corresponding to the particular lectures.
Modulprüfung
Beschreibung der Prüfungs- und Studienleistungen
There will be an oral exam of 25 minutes duration. Therein the achievement of the competencies given in section learning outcome is tested exemplarily at least to the given cognition level using comprehension questions and sample calculations.
For example an assignment in the exam might be:
- What are the scaling relations in heterogeneous catalysis and what is the physical origin of this phenomenon?
- What is a typical origin of high ionic conductivity in solids? What is the mechanism of proton conductivity in solid state proton conductors?
- What are ionic liquids? Analyze their possible prospective roles in energy science.
- What are the working principles of supercapacitors? Name state of the art functional materials for these devices.
- Explain the working principles of dye-sensitized solar cells and perovskite solar cells. Name state of the art functional materials for these devices.
Wiederholbarkeit
Eine Wiederholungsmöglichkeit wird am Semesterende angeboten.