Erneuerbare Energien
Renewable Energy
Modul PH2160
Modulversion vom SS 2022 (aktuell)
Von dieser Modulbeschreibung gibt es historische Versionen. Eine Modulbeschreibung ist immer so lange gültig, bis sie von einer neuen abgelöst wird.
Ob die Lehrveranstaltungen des Moduls in einem spezifischen Semester angeboten werden, finden Sie im Abschnitt Lehrveranstaltungen, Lern- und Lehrmethoden und Literaturhinweise unten.
verfügbare Modulversionen | ||||||
---|---|---|---|---|---|---|
SS 2022 | SS 2021 | SS 2020 | SS 2019 | SS 2018 | SS 2017 | SS 2014 |
Basisdaten
PH2160 ist ein Semestermodul in Englisch auf Master-Niveau das im Sommersemester angeboten wird.
Das Modul ist Bestandteil der folgenden Kataloge in den Studienangeboten der Physik.
- Spezifischer Spezialfachkatalog Physik der kondensierten Materie
- Spezifischer Spezialfachkatalog Applied and Engineering Physics
- Komplementärer Spezialfachkatalog Kern-, Teilchen- und Astrophysik
- Komplementärer Spezialfachkatalog Biophysik
Soweit nicht beim Export in einen fachfremden Studiengang ein anderer studentischer Arbeitsaufwand ("Workload") festgelegt wurde, ist der Umfang der folgenden Tabelle zu entnehmen.
Gesamtaufwand | Präsenzveranstaltungen | Umfang (ECTS) |
---|---|---|
300 h | 75 h | 10 CP |
Inhaltlich verantwortlich für das Modul PH2160 ist Ian Sharp.
Inhalte, Lernergebnisse und Voraussetzungen
Inhalt
This module provides an up-to-date introduction to the physical laws and limitations governing the use of renewable energy sources in our modern society. In addition, the current state-of-the-art of the different forms of renewable energy in terms of conversion efficiencies, energy densities, time-dependent global and local availability and energy storage is presented in a quantitative manner.
In the first half the module (about 50%) deals with classical (mainly mechanical and thermal) forms of renewable energy. After a general discussion of different forms of energy and energy conservation, the system "earth-sun" as the origin of all forms of renewable energy is discussed in detail, in order to understand the underlying astrophysical boundary conditions. This is followed by an in-depth analysis of wave and tidal energy, wind energy, as well as geothermal and solar thermal energy.
This is followed by the discussion of forms of renewable energy which require a specific understanding of electronic and optoelectronic processes in molecules and solids: photosynthesis and biomass, photovoltaics, and thermoelectric energy conversion. Basic electronic processes as well as relevant materials and device structures will be described.
Lernergebnisse
After completing the module the students are able to
- understand the different forms of renewable energy, their origin and their specific boundary conditions in terms of availability, energy density and storage capability
- describe the fundamental physical concepts limiting the technical use of renewable energy sources and the efficient conversion into other forms of energy
- provide a qualitative description of technical means to efficiently harvest different renewable energy sources, including a realistic understanding of typical efficiencies and overall contributions to a future energy scenario
- realistically evaluate and judge the potential economical and environmental impact of different forms of renewable energy on a global scale.
Voraussetzungen
No preconditions in addition to the requirements for the Master’s program in Physics.
Lehrveranstaltungen, Lern- und Lehrmethoden und Literaturhinweise
Lehrveranstaltungen und Termine
Art | SWS | Titel | Dozent(en) | Termine | Links |
---|---|---|---|---|---|
VO | 4 | Renewable Energy | Sharp, I. |
Mo, 14:00–16:00, PH HS2 Di, 16:00–18:00, PH HS2 |
eLearning Unterlagen |
UE | 1 | Übung zu Erneuerbare Energien |
Grünleitner, T.
Zhou, G.
Leitung/Koordination: Sharp, I. |
Mi, 16:30–18:00, WSI S101 Do, 14:00–16:00, WSI S101 Do, 16:00–18:00, WSI S101 Do, 14:00–16:00, WSI S101 |
Lern- und Lehrmethoden
In the thematically structured lecture the learning content is presented. Cross references between different topics will discuss the main physical concepts relevant for different forms of renewable energy. Direct question/answer periods will actively involve the students to better develop their individual understanding of state-of-the-art data and physical concepts.
Medienformen
1) Handwritten lecture notes based on tablet-PC / beamer presentation in pdf and onenote format
2) Additional handout material (diagrams, original articles etc.) in pdf format
Both will be available until the completion of the repeat exam for download on a password-protected web page.
Exercise/Tutorial: The presentation of the learning content is enhanced by example problems and exercises, presented within tutorial sessions. These learning activities are intended to deepen the students’ understanding and to help their learning of the course material.
Literatur
- S. Peake: Renewable Energy: Power for a Sustainable Future, Oxford University Press, (2017)
- A.V. da Rosa: Fundamentals of Renewable Energy Processes, Academic Press, (2012)
- R.L. Jaffe & W. Taylor: The Physics of Energy, Cambridge University Press, (2018)
Modulprüfung
Beschreibung der Prüfungs- und Studienleistungen
There will be a written exam of 90 minutes duration. Therein the achievement of the competencies given in section learning outcome is tested exemplarily at least to the given cognition level using calculation problems and comprehension questions.
For example an assignment in the exam might be:
- What is the physical formula describing the energy density of energy form x,y,z?
- Why do modern wind engines have three rotor blades?
- Describe the main loss mechanism of wind engines at low tip speed ratios.
- What is the maximum achievable concentration factor for solar radiation? Why?
- Describe the dependence of a single absorber solar cell on the absorber band gap.
- What is the fill factor of a thermoelectric power generator?
In the exam no learning aids are permitted.
Wiederholbarkeit
Eine Wiederholungsmöglichkeit wird am Semesterende angeboten.