QST Experiment: Quantenhardware
QST Experiment: Quantum Hardware

Modul PH1009 [QST-EX]

Diese Modulbeschreibung enthält neben den eigentlichen Beschreibungen der Inhalte, Lernergebnisse, Lehr- und Lernmethoden und Prüfungsformen auch Verweise auf die aktuellen Lehrveranstaltungen und Termine für die Modulprüfung in den jeweiligen Abschnitten.

Modulversion vom WS 2022/3 (aktuell)

Von dieser Modulbeschreibung gibt es historische Versionen. Eine Modulbeschreibung ist immer so lange gültig, bis sie von einer neuen abgelöst wird.

Ob die Lehrveranstaltungen des Moduls in einem spezifischen Semester angeboten werden, finden Sie im Abschnitt Lehrveranstaltungen, Lern- und Lehrmethoden und Literaturhinweise unten.

verfügbare Modulversionen
WS 2022/3WS 2021/2WS 2020/1

Basisdaten

PH1009 ist ein Semestermodul in Englisch auf Master-Niveau das im Wintersemester angeboten wird.

Das Modul ist Bestandteil der folgenden Kataloge in den Studienangeboten der Physik.

  • Spezifischer Spezialfachkatalog Physik der kondensierten Materie
  • Spezifischer Spezialfachkatalog Applied and Engineering Physics
  • Komplementärer Spezialfachkatalog Kern-, Teilchen- und Astrophysik
  • Komplementärer Spezialfachkatalog Biophysik
  • Pflichtmodule im M.Sc. Quantum Science & Technology

Soweit nicht beim Export in einen fachfremden Studiengang ein anderer studentischer Arbeitsaufwand ("Workload") festgelegt wurde, ist der Umfang der folgenden Tabelle zu entnehmen.

GesamtaufwandPräsenzveranstaltungenUmfang (ECTS)
300 h 90 h 10 CP

Inhaltlich verantwortlich für das Modul PH1009 ist Stefan Filipp.

Inhalte, Lernergebnisse und Voraussetzungen

Inhalt

The PH1009 QST Experiment: Quantum Hardware introduces the students to various different physical implementations of quantum systems. Starting with a brief review of key physical concepts and applications, the module first focuses on light-matter interaction, providing the basic concepts of cavity and circuit quantum electrodynamics (QED) as well as the essential models to describe the quantum systems discussed later. Then, various different experimental approaches to realize superconducting and semiconducting quantum bits are introduced. This includes the techniques for control, manipulation and readout of qubits, the concepts for single and two-qubit gates and the routes to build large quantum processors based on them. In the last part, the foundations of quantum sensing are introduced. This includes the discussion of noise sources and the fundamental limits of sensitivity (standard quantum limit and beyond). Finally, the implementation of quantum sensors via opto-mechanical systems and color centers in semiconductors are discussed. 

Introduction, Overview, Motivation

  • What is “Quantum 1.0”, what is “Quantum 2.0”?

  • Quantum two-level system, quantum harmonic oscillator

  • Superposition, entanglement, relaxation and dephasing (examples NMR, ESR)

  • Quantum vs. classical information

  • Potential applications: computing, simulation, sensing, cryptography

Light-Matter Interaction

  • Light

    • Quantization of electromagnetic field
    • Thermal, coherent, Fock states (photon statistics, correlations, bunching, ...)
    • Photon boxes (mode volume, vacuum field, …)

    • Sources and detectors (optical vs microwave, single photons, coherent light, ..)

    • Entangled photons

  • Matter

    • Natural and artificial atoms, realization of quantum two-level systems

    • Size of dipole moments

  • Light-matter interaction

    • Semi-classical light-matter interaction

    • Jaynes-Cummings model, Rabi model

    • Cavity and circuit electrodynamics (cooperativity, coupling strength, strong vs. ultra-strong coupling)

    • AC Stark effect

  • Experimental tools and methods

Superconducting Quantum Circuits

  • Superconducting resonators (1D vs 3D, quality factor)

  • Superconducting qubits as nonlinear harmonic oscillators (Josephson junction as dissipationless nonlinear inductance)

  • Engineering of Qubit Hamiltonian

    • Interaction strength

    • Anharmonicity

    • Decoherence 

  • Single and two-qubit gates

  • Control, manipulation and readout

Semiconductor Quantum Circuits

  • Resonators

  • Semiconductor quantum bits (III-V quantum dots, donors and defects)

  • Interaction strength, anharmonicity, decoherence & dephasing

  • Single and two-qubit gates

  • Control, manipulation, readout

Atoms/Quantum Gases 

  • Generation and characterization of ultracold quantum gases: experimental techniques (laser cooling and trapping, evaporative cooling)

  • Interactions between ultracold atoms

  • Optical lattices

  • Bose-Hubbard model, Hubbard model

Quantum Sensing 

  • Limitation of sensitivity, noise sources, noise power spectral density, amplifiers

  • Standard quantum limit (SQL) of sensing and measurement

  • Optomechanics 

    • measurement of position using light

    • classical and quantum equations of motion

    • shot noise limit for imprecision noise

    • quantum backaction noise (radiation pressure shot noise limit of optomechanics)

  • Quantum sensing with NV center spin qubits, SQL for sensing with spins

  •  Quantum sensing beyond the SQL: squeezed light or the implementation of quantum non-demolition measurement protocols

Lernergebnisse

After completing the Module the student is able to:

  • Understand the physical concepts of quantum science and technology as well as the fundamental techniques for the realization of quantum hardware,

  • Analyze and evaluate specific problems related to the realization of quantum hardware,

  • Design quantum bits and circuits for specific applications,

  • Develop schemes for the control, manipulation and readout of quantum bits and circuits,

  • Understand the concepts of quantum sensing and related hardware implementations based on optomechanical systems and defects in diamond and semiconductors.

Voraussetzungen

Keine Vorkenntnisse nötig, die über die Zulassungsvoraussetzungen zum Masterstudium hinausgehen.

Lehrveranstaltungen, Lern- und Lehrmethoden und Literaturhinweise

Lehrveranstaltungen und Termine

ArtSWSTitelDozent(en)TermineLinks
VO 4 QST Experiment: Quantum Hardware Filipp, S. Do, 16:00–18:00, PH HS1
Fr, 08:00–10:00, PH HS1
UE 2 Exercise to QST Experiment: Quantum Hardware Haslbeck, F. Wallner, F.
Leitung/Koordination: Filipp, S.
Termine in Gruppen

Lern- und Lehrmethoden

The module consists of a lecture series (4 SWS) and exercise classess (2 SWS), comprising two lecture sessions and one exercise session per week. 

Blackboard / tablet PC for the introduction of physical concepts and the quantitative analysis of the effects, beamer projection for the discussion of implementations and the experimentally obtained results, complemented by videos, simulations and selected practical experiments. The students are involved in scientific discussions to stimulate their intellectual power.

In the exercises the content is deepened and applied using examples and calculations. Thus the students are trained to explain and apply the acquired physics knowledge independently.

Participation in the exercise classes is strongly recommended, since the exercises are aids for acquiring a deeper understanding of the core concepts of the course and for practicing to solve typical exam problems.

Medienformen

Handwritten notes on tablet PC, sketches of experimental setups, presentation of relevant data using PowerPoint, handouts of relevant slides. A pdf document of the lecture content will be provided via the internet for download. At the same time, there will be exercises for download and discussion in exercise groups.

Literatur

  • Daniel F. Walls, Gerard J. Milburn, Quantum Optics, Springer Verlag.

  • Michael A. Nielsen, ‎Isaac L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press.

  • A. M. Zagoskin, Quantum Engineering: Theory and Design of Quantum Coherent Structures, Cambridge University Press.

  • K. K. Likharev: Dynamics of Josephson Junctions and Circuits Gordon and Breach Science Publishers, New York.

  • T. P. Orlando, K. A. Delin: Foundations of Applied Superconductivity, Addison-Wesley, New York.

Modulprüfung

Beschreibung der Prüfungs- und Studienleistungen

Es findet eine schriftliche Klausur von 180 Minuten Dauer statt. Darin wird exemplarisch das Erreichen der im Abschnitt Lernergebnisse dargestellten Kompetenzen mindestens in der dort angegebenen Erkenntnisstufe durch Rechenaufgaben und Verständnisfragen überprüft.

Prüfungsaufgabe könnte beispielsweise sein:

  • What is the definition of pure and mixed quantum states?
  • What do we understand about quantum superposition and entanglement? Can you write down a typical example of an entangled state?
  • What are the basic properties of thermal, coherent and Fock states of the light field? How can we generate such states?
  • What determines the vacuum field of an electromagnetic resonator?
  • What determines the coupling strength between a quantum two-level system and the quantized modes of an electromagnetic resonator?
  • What is the difference between weak, strong and ultrastrong coupling? What is the definition of cooperativity?
  • What kind of superconducting qubits do you know? What are the key advantages and disadvantages of those qubits?
  • How can we realize a spin-photon interface in semiconductor quantum circuits?
  • Which physical processes limit the resolution of sensors? What do we understand about quantum limited resolution?
  • What is the standard quantum limit (SQL) of sensing and measurement? How can we overcome the SQL?
  • What are the physical and technical ingredients for quantum sensing with NV center spin qubits?

Auf die Note einer bestandenen Modulprüfung in einer der beiden Prüfungsperioden im Semester der Vorlesung wird ein Bonus (eine Zwischennotenstufe "0,3" besser) gewährt (4,3 wird nicht auf 4,0 aufgewertet), wenn die/der Studierende die Mid-Term-Leistung bestanden hat, diese besteht aus dem Bestehen von mindestens 50% der Übungsaufgaben.

Wiederholbarkeit

Eine Wiederholungsmöglichkeit wird am Semesterende angeboten.

Aktuell zugeordnete Prüfungstermine

Derzeit sind in TUMonline die folgenden Prüfungstermine angelegt. Bitte beachten Sie neben den oben stehenden allgemeinen Hinweisen auch stets aktuelle Ankündigungen während der Lehrveranstaltungen.

Titel
ZeitOrtInfoAnmeldung
Prüfung zu QST-Experiment: Quantenhardware
Di, 20.2.2024, 11:00 bis 14:00 00.02.001
21010
00.02.001
bis 15.1.2024 (Abmeldung bis 13.2.2024)
Do, 11.4.2024, 11:00 bis 14:00 00.02.001
00.02.001
bis 25.3.2024 (Abmeldung bis 4.4.2024)
Nach oben