Halbleiter-Quanten-Bauelemente
Semiconductor Quantum Devices

Modul NAT3006

Diese Modulbeschreibung enthält neben den eigentlichen Beschreibungen der Inhalte, Lernergebnisse, Lehr- und Lernmethoden und Prüfungsformen auch Verweise auf die aktuellen Lehrveranstaltungen und Termine für die Modulprüfung in den jeweiligen Abschnitten.

Basisdaten

NAT3006 ist ein Semestermodul in Englisch auf Master-Niveau das im Wintersemester angeboten wird.

Das Modul ist Bestandteil der folgenden Kataloge in den Studienangeboten der Physik.

  • Spezifischer Spezialfachkatalog Physik der kondensierten Materie
  • Spezifischer Spezialfachkatalog Applied and Engineering Physics
  • Fokussierungsrichtung Experimentelle Quantenwissenschaften & -technologien im M.Sc. Quantum Science & Technology
  • Komplementärer Spezialfachkatalog Kern-, Teilchen- und Astrophysik
  • Komplementärer Spezialfachkatalog Biophysik

Soweit nicht beim Export in einen fachfremden Studiengang ein anderer studentischer Arbeitsaufwand ("Workload") festgelegt wurde, ist der Umfang der folgenden Tabelle zu entnehmen.

GesamtaufwandPräsenzveranstaltungenUmfang (ECTS)
300 h 60 h 10 CP

Inhaltlich verantwortlich für das Modul NAT3006 ist Jonathan Finley.

Inhalte, Lernergebnisse und Voraussetzungen

Inhalt

Semiconductor-based quantum devices and circuits are highly promising for building the hardware needed for the implementation of future quantum technologies. They provide wide scope for implementing various quantum technologies, including quantum communication & computation and exploring the fundamental properties of entangled multi-partite quantum systems (e.g. photonic cluster states).  This course is designed specifically for Master Students at TUM, LMU following the QST, AEP and KM tracks. We will begin by exploring semiconductor heterostructures and discussing the impact on electronic properties (energy spectrum and bandstructure). Our lectures continue to discuss the growth of ultrapure quantum materials, and top-down nanostructuring methods to provide us with an understanding of methods for controlling and reading the quantum state of individual spin-qubits in semiconductor heterostructures. Our lectures will then move on to explore technological and material aspects, including the techniques used to produce semiconductor-based quantum light sources and detectors. At the end of the lecture, we will explore strongly interacting quantum fluids of light in nanostructured semiconductor microcavities.  Specific topics will include:
  • Fundamentals
    • Historical motivation, scientific & technological context.
    • Material systems (silicon-based, III-V, diamond, 2D-materials and silicon-carbide).
    • Tailoring electronic properties by nano-patterning & interactions.
    • Nano-analytical and spectroscopic methods to characterize quantum systems.
    • Quantum emitters: self-assembled quantum dots + defects in crystalline solids.
  • Quantum Electronic Devices
    • High mobility materials for quantum electronics.
    • Trapping single electrons and spins.
    • Quantum transport in semiconductor nanomaterials
    • Integer and fractional quantum Hall effects
    • Using topological excitations in semiconductors as qubits
  • Quantum Photonic Technologies
    • Photonic modes in waveguides, directional couplers and cavities.
    • Light-matter interactions in semiconductors.
    • Generating single and entangled photons on demand.
    • Simulation and computation using photons
    • Quantum limited detectors based on semi-(super)conductors
  • Quantum Fluids of Light
    • Semiconductor microcavity designs (planar, tunable, plasmonic and hybrid).
    • Microcavity polaritons.
    • Bose-Einstein condensation of MC-Polaritons (coherent and incoherent pumping).
    • Superfluid hydrodynamics of the photon fluid.
    • Strongly correlated photons.

Lernergebnisse

After participation in the Module the student is able to:

  1. Understand the rationale for building semiconductor-based quantum electronic and photonic devices and combining them into quantum circuits.
  2. Understand how semiconductor nanostructures can be used to generate, manipulate and detect quantum light.
  3. Explain key-aspects of coherent light-matter interactions at the quantum limit, in the isolated and dissipative regime.
  4. Describe key quantum photonic technologies including quantum cryptography, photonic quantum simulation and linear-optics-quantum-communication.
  5. Explain how microcavity polaritons can undergo Bose-Einstein condensation and describe their non-linear quantum properties.
  6. Make the device concepts related to interacting fluids-of-light comprehensible.

Voraussetzungen

No prerequisites beyond the requirements for the Master’s program in Quantum Science and Technology.

Lehrveranstaltungen, Lern- und Lehrmethoden und Literaturhinweise

Lehrveranstaltungen und Termine

ArtSWSTitelDozent(en)TermineLinks
VO 4 Semiconductor Quantum Devices Finley, J. Mo, 14:00–16:00, WSI S101
Mi, 08:30–10:00, WSI S101
eLearning
UE 1 Exercise to Semiconductor Quantum Devices
Leitung/Koordination: Finley, J.
Mi, 16:30–18:00, WSI S101
Fr, 14:00–15:30, ZNN 0.001
eLearning

Lern- und Lehrmethoden

The module consists of a lecture series (4 SWS), comprising two lecture sessions per week.

Quantitative concepts and analysis will be presented at the blackboard or via iPad+beamer. The latter will be used to discuss the implementation of experimental set-ups. These presentations will be complemented by videos, QuTiP simulations and practical experiments.

Medienformen

Combined Power Point and blackboard/iPad presentation, videos, simulations and experiments.

Literatur

  • Mark Fox - Quantum Optics: An introduction (Oxford University Press 2006)
  • M.A. Nielsen and I.L. Chuang - Quantum Computation and Quantum Information (Cambridge University Press)
  • Peter Michler - Quantum Dots for Quantum Information Technologies - (Springer, 2017).

Modulprüfung

Beschreibung der Prüfungs- und Studienleistungen

There will be a written exam of 60 minutes duration. Therein the achievement of the competencies given in section learning outcome is tested exemplarily at least to the given cognition level using comprehension questions and sample problems.

For example an assignment in the exam might be:

  • Summarise the requirements of quantum states in a semiconductor that allow them to be used as a qubit ?
  • Explain two coherent control methods used to manipulate spin qubits in semiconductors.
  • Describe the process of coherent light-matter interaction in the rotating-wave approximation.
  • Describe how interactions can be generated between single photons in a semiconductor?
  • Explain the fundamental principles of quantum cryptography using single photons and continuous optical fields?
  • How to detect if Bose-Einstein condensation has occurred in a microcavity?

In the exam the following learning aids are permitted: Hand-written sheet with formulas + concepts, double-sided

Participation in the exercise classes is strongly recommended since the exercises prepare for the problems of the exam and rehearse the specific competencies.

Wiederholbarkeit

Eine Wiederholungsmöglichkeit wird am Semesterende angeboten.

Aktuell zugeordnete Prüfungstermine

Derzeit sind in TUMonline die folgenden Prüfungstermine angelegt. Bitte beachten Sie neben den oben stehenden allgemeinen Hinweisen auch stets aktuelle Ankündigungen während der Lehrveranstaltungen.

Titel
ZeitOrtInfoAnmeldung
Prüfung zu Halbleiter-Quanten-Bauelemente
Mo, 19.2.2024, 13:30 bis 15:00 Hörsaal
Hörsaal
bis 15.1.2024 (Abmeldung bis 12.2.2024)
Do, 28.3.2024, 13:30 bis 15:00 2501
2501
bis 25.3.2024
Nach oben